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      ６. Eigenvalue Oscillations in a Lake Part 1 
   On the water surface of an inland lake or an inner bay, eigenvalue (proper) 
oscillations are sometimes induced by wind or incoming tsunamis, and such an 
eigenvalue  oscillation is referred to as “Seiche”   

 We assume a long wave approximation for such an oscillation, and we apply the 
following long wave equation:  
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We introduce a stationary solution as tieyxZ σς −= ),( ; we then have 
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There are two types of boundary conditions: 
（ａ）Coastline boundary and（ｂ）Open ocean boundary. 
 
（ａ） Coastline boundary  

If we assume perfect reflection from the coast line, that is, if we assume that there 
is a vertical wall at the coast, there will be no velocity in the normal direction to the 
coastline. Hence, 

0=⋅ nv rr
                                              (3) 

where nr  is a unit vector parallel to the coastline.  The equation of motion is given 
as （ l

r
: normal direction of the coastline）: 
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Here, l

ru  is zero; hence, (3) is equivalent to the following condition: 

0=
∂
∂
nr
ς

                                               (5) 

Equation (5) shows that the coastline behaves like a mirror for waves. 
（ｂ）Open ocean boundary 
  We assume that any amount of water is supplied from the bay mouth as per the 
requirements from the inner bay.  Further, we assume that the open ocean is 
sufficiently deep and wide. 
This assumption is equivalent to assuming that a nodal line, along which the sea level 
does not change, is present just outside the bay.    
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 Thus, 
ζ ＝ 0                                                 (6) 
 

2. Circular lake with a constant depth 
First, we consider water surface oscillation (Seiche) in a circular lake with a 

constant depth（ )D=  and radius a .  The equation of motion (2) can be re-written in a 
cylindrical coordinate system ),,( zr θ  as 
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where gDc =2 .  We place Z in the following manner 
θnrWZ cos)(= ,        ,....2,1,0=n                          (8) 

Then, (7) becomes 
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This is Bessel’s differential equation, and it has the following general solution: 
      )()()( 21 krNCkrJCrW nn +=                        (10) 
Here nn NJ ,  are Bessel and Neumann functions.  If we want to avoid a solution 

that the amplitude at the lake center is infinity, we should use 02 =C . Hence, the 
change in the lake surface is given by the following form: 

θς σ nekrJ ti
n cos)( −=                                   (11) 

If the radius of the lake is a , the coastline has ar = ; hence, 

   0=
dr
dW

   at   ar =                                  (12) 

On the other hand, the differential formula of Bessel function is  
  )(/)()( 1 xJxxnJxJn nnn +−=′  
（See ”Suugaku Koshiki”, vol. 3, p159, Iwanami Press） 

Using 0)( =′ xJ n  at kax =  , we have 
)()( 1 kakaJkanJ nn +=                                      (13) 

By solving this equation numerically, we obtain k and σ ( ck= ). 
If we select only undirectional modes, that is, if we choose 0=n  solutions, (13) 

becomes 
0)(1 =kaJ  

)(1 xJ  becomes zero at 
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0=x  and ........1347.10,0156.7,8317.3 321 === xxx  
Wave number k  assumes only the values of axk ii /= , and the corresponding 
angular frequencies σ are 

 agDxck iii /==σ   

Further, the period is given by 

  )/(2 gDxaT ii π=                                           (14) 

 
3. Seiche in a Rectangular Lake with Uneven Bottom 

If we consider the Seiche in a rectangular lake and assume  that the 
phenomenon is one-dimensional, the equation of motion is expressed as  
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In the case of a constant depth, we simply have a one-dimensional wave equation as 
follows:  
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（ )2 gDc =                             (16) 

We substitute tiexZ σς −= )( , and then  
02 =+′′ ZkZ                                        (17) 

where k is a wave number and )/2/ Lck πσ == . ax ,0= , 0=′Z  should be 
satisfied at all sides of the lake;   therefore, 

a
xnZ πcos=                                      (18) 

By substituting this in (17), we find that k  takes only the following values: 

a
nkn

π=                                        (19) 

The corresponding wavelengths and periods are 

naLn /2= , )/(2 gDnaTn =                    (20) 

If the depth is not always constant )(xDD = , we can apply Ritz’s method. We 
substitute tiexZ σς −= )(  into (15), and then we have 
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For an uneven bottom lake, we can apply Ritz’s method; in other words, we obtain 
an approximate solution assuming that the boundary conditions are satisfied for all 
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sides.  We set such a function to have the following form: 
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According to Ritz’s method, we calculate the value of the following integral 
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and solve 
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If we assume 1c  is a known number, then we obtain 42 ,...,cc , and λ  which gives 
an approximate solution to the present problem.   
[Mathematical Note:  Ritz’s Method  
    To numerically solve a second-order differential equation of the following type: 

   ( ) )()( xrqyyxp =+′′                                    (25)  

with a boundary condition 
 0)()( == byay   or 0)()( =′=′ byay                  (26) 

  It is possible to obtain the approximate solution in the following manner:  
(1) Determine a function set { iφ } such that all its elements satisfy the boundary 
condition (26). 
     For example,  { iφ }= ,3cos,2cos,cos,1 kxkxkx ...    (27) 
(2) Assume the form of an approximate solution in the linear combination of the 
function set as 
      ⋅⋅⋅⋅+++= 332211 φφφ cccy             (28) 
(3) Calculate the following integral I  
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(4) Obtain ncccc ⋅⋅⋅,,, 321  by solving the following (linear) equations  
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The theoretical basis for this method is derived from the principles applied in 
“Calculus of Variations” (“Henbun-Ho”). 

 


